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ABSTRACT
Using the statistics of pixel optical depths, we compare HI, C IV and CIII absorption in a set of six high qual-

ity z ∼ 3− 4 quasar absorption spectra to that in spectra drawn from twodifferent state-of-the-art cosmological
simulations that include galactic outflows. We find that the simulations predict far too little CIV absorption
unless the UVB is extremely soft, and always predict far too small C III /C IV ratios. We note, however, that
much of the enriched gas is in a phase (T ∼ 105−107K, ρ/〈ρ〉 ∼ 0.1−10,Z & 0.1Z⊙) that should cool by metal
line emission – which was not included in our simulations. When the effect of cooling is modeled, the predicted
C IV absorption increases substantially, but the CIII /C IV ratios are still far too small because the density of
the enriched gas is too low. Finally, we find that the predicted metal distribution is much too inhomogeneous
to reproduce the observed probability distribution of CIV absorption. These findings suggest that strongz . 6
winds cannot fully explain the observed enrichment, and that an additional (perhaps higher-z) contribution is
required.
Subject headings: intergalactic medium — quasars: absorption lines — galaxies: formation

1. INTRODUCTION

Analysis of quasar absorption spectra has revealed that the
intergalactic medium (IGM) has been polluted with heavy ele-
ments such as carbon, silicon and oxygen (for recent work see
Schaye et al. 2003, hereafter S03; Aguirre et al. 2004, here-
after A04; Simcoe et al 2004; Aracil et al. 2004; Boksenberg
et al. 2003) At the same time, observations of starburst galax-
ies (e.g., Shapley et al. 2003) have revealed powerful galactic
outflows resulting from feedback processes in galaxies with
rapid star formation.

This has led to a picture in which the observed enrichment
results from a phase of strong galactic outflows atz & 2 during
the epoch of galaxy formation, and various numerical (e.g.,
Gnedin 1998; Aguirre et al. 2001; Scannapieco, Ferrara, &
Madau 2002; Cen, Nagamine & Ostriker 2004) and semi-
analytic (e.g., Furlanetto & Loeb 2003) models have been able
to very roughly account for the observed level of metal en-
richment. But these comparisons have left many unanswered
questions: can, for example, simulations reproduce the de-
tailed density- and redshift-dependent metal distribution? Can
they reproduce the abundance ratios of different elements and
ions? How is enrichment tied to feedback in galaxies, which
is required to suppress runaway star formation?

Recently, both the numerical simulations and observational
analyses have improved to the degree that some of these ques-
tions can be meaningfully addressed. On the observational
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side, statistical analyses of pixel optical depths (S03; A04)
have inferred the distribution of carbon and silicon using ab-
sorption by HI, C IV , C III , Si IV , and SiIII (see also Simcoe et
al. 2004, who finds consistent results from line fitting of CIV
and OVI .) These studies have shown quantitatively that the
observed intergalactic carbon enrichment is highly inhomo-
geneous, density-dependent, nearly redshift-independent, un-
derabundant (relative to silicon), relatively cool (T < 105K),
and persistent at some level even in gas near the cosmic mean
density. Meanwhile, hydrodynamic simulations (e.g., Theuns
et al. 2002, hereafter T02; Springel & Hernquist 2003a, here-
after SH03) have been produced that probably include all of
the galaxies relevant forz . 6 enrichment, use prescriptions
for feedback that generate galactic winds, and track metals.
SH03 and Hernquist & Springel (2003) have shown in detail
that the star formation rate of their simulations has converged,
i.e. that the included feedback is sufficient to solve the over-
cooling problem; T02 have shown that their simulation does
not significantly disrupt the Lyα forest, but can roughly ac-
count for earlier observations of CIV absorption if the UVB
is extremely soft and the yield is 3× solar.

Clearly, it is of interest to carry out detailed comparisons
between state-of-the art observations and simulations that in-
clude galactic winds. One way to do this is to simply compare
the observationally inferred distribution of metals as a func-
tion of density and redshift to that predicted by the simula-
tions. This could, however, be misleading. For example, hot,
collisionally ionized carbon would be undetectable by obser-
vational studies focusing on CIV . A far more direct and robust
method is to directly compare simulated and observed absorp-
tion spectra. This Letter describes such a comparison. We will
draw several qualitatively new conclusions from a comparison
of absorption by HI, C IV , and CIII in in a set of 6z ∼ 3 QSO
spectra to that in simulated spectra drawn from the SH03 and
T02 simulations.

2. OBSERVATIONS, SIMULATIONS, AND METHOD

We compare our simulations to the observed pixel statistics
published in S03 for the redshift range 2.479≤ z ≤ 4.033 (the
full sample covers 1.654≤ z ≤ 4.451; we employ a smaller
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range so that all of the data can be combined without binning
in redshift). The data come from six quasar spectra: Q0420-
388, Q1425+604, Q2126-158, Q1422+230, Q0055-269, and
Q1055+461, that were taken with either the Keck/HIRES or
the VLT/UVES instrument. See Table 1 of S03 for informa-
tion on the sample.

The simulated spectra are drawn from cosmological SPH
simulations, using the method described in A02: noise, de-
tector resolution, wavelength coverage, and pixelizationare
chosen to match the corresponding observed spectra. The ion-
ization balance is computed using CLOUDY9, with the same
three models for the spectral shape of the UV background
(UVB) as we used in S03 and A04: ‘QG’ is a Haardt & Madau
(2001) model with contributions from quasars and galaxies;
‘Q’ includes quasars only, and ‘QGS’ is a softened ‘QG’: the
flux is reduced by 90% above 4 Ryd. All models are nor-
malized to the HI ionization rate measured by S03, and the
simulation metallicities are converted to carbon number den-
sities using the solar abundance (C/H)⊙ = −3.45 of Anders &
Grevesse (1989).

Results are shown for three simulations. The first, ‘NF’,
was used and described in A02, S03 and A04: it uses 2×2563

particles in a 12h−1 Mpc box with (Ωm,ΩΛ,Ωbh2,h,σ8,n,Y ) =
(0.3,0.7,0.019,0.65,0.9,1.0,0.24). This simulation has no
galactic outflows, but for each UVB model we add to the parti-
cles the carbon distribution inferred in S03 for that UVB (see
Tables 2 and 3 of S03). The second simulation, ‘T’, is de-
scribed in T02: it uses 2× 1283 particles in a 5h−1 Mpc box
with the same cosmological parameters as NF. Here, however,
all supernova thermal energy is deposited as feedback, and gas
is prevented from cooling for 107yr (see Kay et. al. 2002)
so that strong winds are generated which enrich the IGM.
The third simulation, ‘S’, is described in SH03 as their ‘Q4’
model: it uses 2× 2163 particles in a 10h−1Mpc box with
(Ωm,ΩΛ,Ωbh2,h,σ8,n,Y ) = (0.3,0.7,0.02,0.7,0.9,1.0,0.24).
It employs both a sub-grid feedback prescription and a wind
mechanism in which a velocity of 484 km/s is imparted to
certain gas particles in star-forming regions (see Springel &
Hernquist 2003b for details). The simulations have approxi-
mately the same mass resolution (the baryon particle mass is
≈ 1.1×106M⊙ in both), which is adequate to resolve the Lyα
forest and to include relatively small galaxies. The use of two
simulations allows us to compare the effects of two different
feedback prescriptions.

To compare the carbon absorption in simulated and ob-
served spectra, we have employed the pixel optical depth tech-
nique described in A02, S03 and A04. This technique (see
Cowie & Songaila 1998; Ellison et al. 2000; A02; S03)
has several advantages over traditional line-fitting. Perhaps
most important here is the ability to measure CIII absorption,
which is very difficult to do using line fitting because CIII
is not a multiplet and falls in the Lyβ forest. Optical depths
for H I (Lyα), C IV (1548Å), and CIII (977Å) absorption are
extracted from each spectrum for the HI absorption region
between the QSO’s Lyα and Lyβ emission wavelengths, ex-
cluding also a small region near the QSO to avoid proximity
effects (see S03). The optical depths are corrected for strong
contaminating lines, CIV self-contamination by its doublet,
and Lyα contamination of CIII , as described in A02 and S03.

The pixel optical depths are binned for each QSO and the
QSOs are combined as described in A04. In brief, for each
QSO the CIV optical depthsτCIV are binned in HI optical

9 Seehttp://www.pa.uky.edu/∼gary/cloudy.

depthτHI and the median is taken in each bin. Next, the
noise/contamination level, i.e. the medianτCIV optical depth
at very low τHI , is subtracted from each bin and the ratio
(medianτCIV)/τHI is computed. Finally,τHI bins for different
QSOs are combined. The result is a plot of median corrected
τCIV/τHI vs. τHI, as shown in Fig. 1 (upper left). The same
procedure is applied to obtain plots ofτCIII /τCIV vs. τCIV .

3. RESULTS

Figure 1 shows median optical depths (medτCIV)/τHI vs.
τHI (left) and (medτCIII )/τCIV vs.τCIV (right) for observations
(data points) and three simulations. The dotted line shows the
non-feedback (NF) simulation upon which the carbon distri-
bution of S03 has been imposed.10 The other lines show the
SH03 (S) and T02 (T) simulations with the three choices of
UVB (QG, Q, and QGS). Except for the extremely soft UVB
QGS, the simulations woefully under-predict the median CIV
absorption at allτHI . In Table 1 (column 4) we quantify this by
providing the best-fit offset to each set of simulated CIV /H I
optical depths (e.g., simulation S-QG is≈ 1.2dex too low). A
super-solar yield could somewhat ameliorate this but seems
unlikely for carbon, which is underabundant relative toα-
elements in the IGM (e.g., A04). Although the QGS models
are only 0.26-0.64 dex too low overall, they cannot reproduce
the observed shape ofτCIV/τHI vs.τHI : there is too much ab-
sorption at low density (lowτHI) and too little at high-density.

The prime reason for this failure can be seen in Fig. 2,
which shows the metallicity, temperature, and density of a
random subsample of the S simulation particles (the T sim-
ulation is similar). The metal rich intergalactic (overdensity
logδ < 2) gas is almost entirely atT = 105 − 107K. Because
the CIV /C fraction rapidly falls off atT & 105K, this gas is
essentially invisible in CIV , except at very low density if the
UVB is extremely soft.

Even for such an extreme UVB, however, the feedback sim-
ulations predict far too little absorption by CIII relative to
C IV , as can be seen from the upper-right panel of Fig. 1 which
shows (medτCIII )/τCIV vs. τCIV for the same models11. The
C III /C IV ratio drops rapidly forT & 105K and falls roughly
linearly with decreasing density forT ∼ 104K (See Fig. 7 of
S03). Thus, the fact that the CIV visible in the feedback sim-
ulations is accompanied by insufficient CIII means that the
enriched gas is too hot and/or of too low density. Note, on the
other hand, that the NF simulation reproduces the CIII /C IV
values quite well once the carbon distribution is chosen to
match the CIV /H I values.

The problem that the metals in the feedback simulations
are too hot may, however, have a solution. In both simula-
tions the enriched gas is relatively metal-rich by IGM stan-
dards (Z ∼ 0.1− 1Z⊙) and should, in fact, be able to cool via
metal line emission, which wasnot included in the simula-
tions. The contours in Fig. 2 show log(tc/tH), wheretc is the
radiative cooling time for gas that is in collisional ionization
equilibrium computed for overdensityδ ≡ ρ/〈ρ〉 = 1 (tc ∝ δ−1)
using Sutherland & Dopita (1993), andtH is thez = 3 Hubble
time. Nearly all of theδ ∼ 10 gas and much of theδ ∼ 1
gas hastc < tH and should, in the absence of heating, cool to
T ∼ 104K which would increase its visibility in CIV . To test

10 At high-τHI the predictedτCIV/τHI (coming mostly from Q1422+230)
is a bit low because S03 forced a power-law fit toZ(δ) with a redshift-
independent index.

11 For the Q and QG UVBs, there is insufficient CIV absorption to get a
signal; we have thus run models for higher yields (see Table 1).
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FIG. 1.— Binned optical depth ratios (medτCIV )/τHI vs.τHI (left) and (medτCIII )/τCIV vs.τCIV (right) for observations (data points with 1- and 2-σ errors)
and various models.Top: Models NF-QG (the Q and QGS backgrounds yield similar results), S-QG S-Q, S-QGS, and T-QG, as per the legend. The effect of
changing the UVB in the T simulations is similar.Bottom: as in the top panels, but particles with cooling timetc < tH are set toT = 2×104 K. The same models
are shown, except that the dotted line (‘C1’) corresponds toS-QG if only particles withtc < 0.1tH cool (the effect of this change is similar for the other models).

the importance of cooling, we have generated simulated spec-
tra for which all particles withtc < tH are set toT = 2×104K;
see bottom panels of Fig. 1. In this case, the QG simulations
can roughly match the observedτCIV/τHI values, although the
trend withτHI is still not reproduced. The QGS models with
cooling now predict too much CIV absorption.

The employed cooling prescription is ratherad hoc. The
particle metallicities may be unreliable because the simulation
assumes perfect mixing at the particle level and zero mixing
between particles once they leave the star forming gas. Fur-
thermore, heating is ignored in the calculation of the cool-
ing times, the gas may not be in collisional ionization equi-
librium, and the density may not remain constant as the gas
cools. To further illustrate the sensitivity of the resultsto the
cooling prescription, the dotted curves in the lower panelsof
Fig. 1 show the results for the S-QG simulation if the gas cools
only whentc < 0.1tH . The CIV absorption is lower by about
0.5 dex, nearly independent ofτHI . Varying the final temper-
ature between 1− 3×104K has a relatively small effect.

Although metal line cooling may help resolve the discrep-
ancy for CIV /H I, it actually makes the problem worse for
C III /C IV as can be seen from the bottom right panel of
Fig. 1. This indicates that in the simulations the CIV ab-
sorption arises in gas with too low a density. The level of
logτCIII /τCIV ∼ −0.5 predicted by the simulations indicates
that the CIV absorption withτCIV & 0.1 arises inδ ∼ 1− 5
gas, whereas the corresponding observed absorption appears
to occur in gas ofδ ∼ 10−30 (see Fig. 7 of S03). The increase
in density that would very likely accompany the gas cooling
may alleviate this problem, but this will have to be determined

FIG. 2.— Metallicities (in solar units) and temperatures of particles in the
S simulation (only a random 0.5% of metal enriched particlesare shown,
and 0.05% of the metal-free particles are shown in the scattered bar near
Z = 10−4). The particle colors reflect the log of the gas overdensity as shown
by the colored bar: intergalacticδ . 100 gas is blue-green; galactic gas (with
effective temperatures given by the sub-grid multiphase model) is yellow-red.
The contours indicate log(tc/tH ) at δ = 1 andz = 3. Sincetc ∝ δ−1, particles
inside the ‘0’ contour atδ = 1 can cool, as can particles atδ = 10 inside the
‘1’ contour.

using future simulations that include metal-line cooling.
Information on the homogeneity of the observed metal dis-

tribution can be inferred by using additional percentiles of the
τCIV(τHI) distribution (S03). In columns 3–5 of Table 1 we
give the best-fit offset to the simulations in the 31st, 50th and
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TABLE 1
COMPARISONS MADE

Sim- Offseta for percentileb in CIV/HI in CIII/CIV
UVB Coolc 31 50 84 50

NF-QG - 0.26±0.13 0.15±0.06 0.12±0.05 0.16±0.05
S-QG - NAd 1.22±0.09 0.73±0.07 1.00±0.11e

S-Q - NAd 1.41±0.10 0.73±0.07 1.05±0.12e

S-QGS - 3.46±0.24 0.64±0.06 0.41±0.05 0.73±0.08
T-QG - NAd 0.94±0.07 0.69±0.06 0.41±0.07e

T-Q - NAd 1.43±0.10 0.94±0.07 0.58±0.07e

T-QGS - 1.40±0.22 0.26±0.06 0.02±0.05 0.56±0.07t
S-QG C 0.82±0.17 0.05±0.05 −0.59±0.07 0.76±0.07
S-Q C 1.14±0.24 0.28±0.06 −0.16±0.07 0.87±0.07
S-QGS C −0.01±0.13 −0.45±0.06 −1.42±0.05 0.96±0.08
T-QG C 1.18±0.19 0.13±0.05 −0.31±0.06 0.77±0.08
T-Q C 1.29±0.21 0.42±0.06 0.04±0.06 0.68±0.08
T-QGS C 0.10±0.14 −0.28±0.06 −1.27±0.06 1.07±0.12
S-QG C1 2.92±0.20 0.48±0.06 0.11±0.06 0.65±0.06
S-Q C1 3.34±0.27 0.63±0.06 0.34±0.06 0.78±0.07
S-QGS C1 1.60±0.22 0.20±0.06 −0.46±0.06 0.75±0.06
T-QG C1 1.86±0.23 0.44±0.06 0.18±0.05 0.57±0.06
T-Q C1 4.65±0.32 0.81±0.07 0.47±0.05 0.44±0.07
T-QGS C1 0.68±0.18 0.09±0.06 −0.42±0.06 0.84±0.07

aThe log of the best-fit offset to the simulations. A positive value indicates that the
prediction for the percentile is too low. Errors are given by∆χ

2 = 1.
bThese correspond to -0.5, 0.0, and +1.0σ in a lognormal distribution ofτ about the

median; see S03. There are 22, 41, and 35 degrees of freedom for percentiles 31, 50,
and 84, in CIV/HI, and 24 d.o.f. for CIII/CIV.

cFor ‘C’ models particles withtc < tH are set toT = 2× 104 K. For ‘C1’ models this
is done iftc < 0.1tH .

dFor these models the simulation values were too low to obtaina reliable fit.
eIn the CIII/CIV results for these models, a yield given by theCIV/HI offset was used;

these are marked by an ‘F’ in Fig. 1.

84th percentiles of the CIV distribution. We find that mod-
els that can roughly reproduce the medians cannot simultane-
ously reproduce the other percentiles. In all cases, the metals
are too inhomogeneously distributed as compared to the ob-
servations (e.g., in S-QG with cooling, the 31st percentileis
too low by∼ 0.8dex while the 84th is too high by∼ 0.6dex,
indicating a wider distribution). This appears to be true inde-
pendent of the UVB and the cooling prescription and is hence
a rather robust inconsistency.

4. CONCLUSIONS

A major goal for cosmological simulations is to develop
a prescription for feedback with which observations of the
IGM and galaxies can be simultaneously reproduced. We
have compared in detail the statistics of CIV and CIII ab-
sorption in a set of six high-qualityz ∼ 3− 4 quasar spectra to
that in simulated spectra drawn from two tate-of-the-art cos-
mological SPH simulations with a wide range of UVB models
and two different prescriptions for feedback: the simulation of

Springel & Hernquist (2003a), which predicts a numerically
resolved star formation history that is consistent with theob-
servations and the simulation of Theuns et al. (2002) which
matches observations of the HI Lyα forest. We have come to
the following conclusions:

• The simulations predict far too little CIV absorption
unless the UVB is extremely soft.

• In all cases, the simulations predict far too small
C III /C IV ratios.

• The simulations predict that many of the heavy ele-
ments reside in gas that is metal-rich (Z & Z⊙) and hot
(105 . T < 107K). Much of this gas should be able
to cool via metal lines, which was not included in the
simulations. It will be important to accurately model
cooling in future numerical simulations.

• If a crude cooling prescription is applied, the CIV
absorption increases significantly, but the predicted
C III /C IV ratio is still far too low because the metals
reside in gas that is too low density. Cooling should
increase the enriched gas density, and this can be esti-
mated in future simulations with metal-line cooling.

• Independent of the cooling prescription, the metal dis-
tribution in the simulations is too inhomogeneous to
match the observed distribution ofτCIV(τHI).

Numerical simulations with strong outflows fromMbaryon&

108M⊙ galaxies deposit most intergalactic metals in hot,
metal-rich bubbles that preferentially inhabit voids and com-
prise a relatively small filling factor, which allows them to
avoid overly disrupting the Lyα forest (Theuns et al. 2002).
However, these very attributes appear to prevent them from re-
producing the observations of absorption by heavy elements.

If metal cooling is efficient or if the gas has an unresolved
multiphase structure then these winds may account for some
of the observed enrichment; otherwise they would be largely
hidden from current observations. In either case it appears
that an additional ingredient – either in the form of another
enrichment mechanism, or higher-z enrichment that is unre-
solved by the simulations – is needed.
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